Course Code	22MEMD2T1	Year I		Semester	II	
Course	Programme	Branch	ME	Course Type	Theory	
Category	core	Dianch	IVIL	Course Type		
Credits	4	L-T-P	4-0-0	Prerequisites	Kinematics of Machinery	
Continuous Internal Evaluation:	40	Semester End Evaluation:	60	Total Marks:	100	

MECHANISM DESIGN AND SYNTHESIS

Course outcomes: At the end of the course, the student will be able to:

СО	Statement	BTL	Units
CO1	Build up critical thinking and problem solving capacity of various mechanical engineering problems related to kinematics of mechanisms	L3	1
CO2	Analyze design related problems of function, path, motion generation, dimensional synthesis, Coordinate transformation, and the four bar slider crank position solution.	L4	2
CO3	Asses various concepts of two position motion, three position motion generated by analytical synthesis, precision point methods	L4	3
CO4	Velocity and acceleration analysis of Fourbar pin jointed linkage, Coriolis acceleration, working principles of cams	L4	4

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	2		2					1			3	1
CO 2	3	3	2		2					1			3	1
CO 3	3	3	2		2					1			3	1
CO 4	3	2	2		2					1			3	1

Syllabus							
Unit	Contents						
		СО					
1	Kinematics of Mechanisms: Introduction - kinematics and kinetics -	CO1					
	Mechanisms and machines- applications of kinematics- identification of need,						

	background research, Detailed design prototyping and testing, production.								
	Kinematics fundamentals: Introduction, Degrees of Freedom (DOF), types								
	of motion, links, joints and kinematic chains, Determining Degree of Freedom								
	in Planar Mechanisms and in Spatial Mechanisms. Mechanisms and structures.								
	Graphical linkage synthesis : Introduction synthesis, Function, path, and motion generation, Dimensional synthesis, two position synthesis, three position synthesis with specified moving pivots. Quick return mechanisms	CO2							
	Fourbar quick return, Straight line mechanisms, Designing optimum straight								
2	line Fourbar linkages.								
2	Position Analysis: Introduction, coordinate systems, position and								
	displacement - Coordinate transformation. Translation, and rotation,								
	Graphical position Analysis of linkages, The Fourbar slider crank position								
	solution, Position of any point on a linkage, Transmission angles, extreme								
	values of the transmission angle.								
	Analytical linkage synthesis: Introduction, types of kinematic synthesis,	C03							
	Precision points, Two position motion generation by analytical synthesis,								
	Three position motion generation by analytical synthesis, Synthesis for a								
3	specified fixed pivot location, Center point and circle point circles, Four and								
· ·	five position analytical synthesis, Analytical synthesis of a path generator								
	with prescribed timing, analytical synthesis of Fourbar function generator,								
	Precision point methods, Coupler curve equation methods, Optimization								
	methods.								
	Velocity Analysis: Introduction-definition of velocity, Graphical velocity	CO4							
	analysis, instant centers of velocity, velocity analysis with instant centers,								
	angular velocity ratio, Mechanical Advantage, using instant centers in linkage								
	Design, The Fourbar inverted slider crank.								
	Acceleration Analysis: Introduction definition of Acceleration Graphical								
4	Acceleration analysis, Analytical solutions for acceleration analysis, and the								
•	Fourbar pin jointed linkage the Fourbar slider-crank, Coriolis acceleration.								
	The Fourbar inverted slider crank.								
	Cam Design : Introduction cam terminology, type of follower motion, type of								
	tollower, type of cam, type of motion constraints, SVAJ Diagrams. The								
	tundamental law of cam design, Simple Harmonic Motion (SHM), Cycloidal								
	displacement.								

Learning Resources

Text Book(s):

- 1. Kinematics and Dynamics of Machinery RL. Norton, Tata McGraw Hill, 2009
- 2. Machine Design an Integrated Approach RL. Norton, Pearson, 2004

References:

- 1. Mechanical Engineering Design Shigley et al., Tat McGraw Hill, 2011
- 2. Mechanism Design Arthur g Erdman Prentice hall of india, 1988

3. Amitabh Ghosh and Ashok Kumar Mallik, Theory of Mechanisms and Machines. E.W.P.Publishers.